In this tutorial, we will write an example for computing SVD value with TensorFlow. You can exercise this example by update our example code.
import tensorflow as tf; import numpy as np A = tf.constant([[1,2,3],[4,5,6],[7,8,9]], dtype=tf.float32) s, u, v = tf.svd(A) A2 = tf.matmul(tf.matmul(u, tf.diag(s)), tf.transpose(v)) init = tf.global_variables_initializer() init_local = tf.local_variables_initializer() with tf.Session() as sess: sess.run([init, init_local]) np.set_printoptions(precision=4, suppress=True) s, u, v,a2 = (sess.run([s, u, v, A2])) print 's=' print s print 'u=' print u print 'v=' print v print 'A=' print a2
Notice:
You must know we also can caculate SVD in Numpy and you should know the difference between them, especial for V matrix.