In text processing, we may need to visualize some labeled data using scatter plots in matplotlib. In this tutorial, we will use an example to show you how to display them.
Preliminary
First, we will create some labeled data using numpy.
#-*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt label_num = 5 data = np.random.rand(30,2) labels = [str(i) for i in np.array(range(data.shape[0])) % label_num + 1]
In this example, we will create 30 data with 5 labels.
Then we will display them with different colors using a scatter plot.
We will create a function to implement it.
Visualize labeled data using different colors in scatter plots
Here is an function:
def plot_with_labels(low_dim_embs, labels): plt.figure(figsize=(5, 5)) # in inches for i, label in enumerate(labels): x, y = low_dim_embs[i, :] #2 dim color = 'r' if label == '1': color = 'r' if label == '2': color = 'b' if label == '3': color = 'g' if label == '4': color = 'b' if label == '5': color = 'orange' plt.scatter(x, y, color = color) # plt.annotate(label, xy=(x, y), #show point xytext=(5, 2), #show annotate textcoords='offset points', ha='right', va='bottom') plt.show()
You can change the labeled color by referring this tutorial:
List of Matplotlib Common Used Colors – Matplotlib Tutorial
We can display these labeled data.
plot_with_labels(data, labels)
Run this code, you will get a scatter plot as follows.