tf.sigmoid can compute sigmoid value of a tensor and return value in (0,1), in this tutorial, you can use it easily by following our steps.
How to use tf.sigmoid function?
Step 1. Define a tensor
import tensorflow as tf import numpy as np t=np.array([[1,0,0,0,0],[0,1,0,0,0],[3,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,1,0,0],[0,1,0,0,0],[0,1,0,0,1]]) #convert a numpy to a tensor tt=tf.convert_to_tensor(t, tf.float32)
Step 2. Use tf.sigmoid to compute
so = tf.sigmoid(tt)
Step 3. Print the result
init = tf.global_variables_initializer() init_local = tf.local_variables_initializer() with tf.Session() as sess: sess.run([init, init_local]) np.set_printoptions(precision=4, suppress=True) max_index= (sess.run([so])) print max_index
the result is:
Notice: tf.sigmoid only compute each element, no axis selection.